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Interaction Effect between Ellipsoidal
Inclusions in an Infinite Body under
Asymmetric Uniaxial Tension*

Nao-Aki NODA**, Kenji TOMARI***
and Tadatoshi MATSUQ****

This paper deals with an interaction problem of two ellipsoidal inclusions under
asymmetric uniaxial tension. The problem is solved on the superposition of two
auxiliary loads; (i) biaxial tension and (ii) plane state of pure shear. These
problems are formulated as a system of singular integral equations with Cauchy-type
or logarithmic-type singularities, where the densities of the body forces distributed in
the #», 8, z directions are unknown functions. In order to satisfy the boundary
conditions along the boundaries, the unknown functions are approximated by a linear
combination of fundamental density functions and polynomials. The present method
is found to yield rapidly converging numerical results and smooth stress distributions
along the boundaries. For hard inclusions (E:i/Ex>1), the interaction appears as a
large compressive stress ¢» ; however, the maximum tensile stress is almost indepen-
dent of the interaction. For soft inclusions (E1/Ex<1), the interaction appears as a

large tensile stress .
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1. Introduction

Most engineering materials contain some defects
in the form of cracks, voids, inclusions, or second-
phased particles. To evaluate the effect of defects on
the strength of structures, it is necessary to know the
stress concentration of those defects. As a model of
defects elliptical and ellipsoidal inclusions are impor-
tant because they cover a wide variety of particular
cases, such as line, circular, and spherical defects. In
previous studies a single ellipsoidal inclusion, 2D ellip-
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tical inclusions, and 3D symmetric inclusion problems
are treated by several authors®~-@%. However, few
studies are made for 3D asymmetric problems except
for spherical cavities under asymmetric uniaxial ten-
sion treated by Tsuchida®®1® et al. and ellipsoidal
cavities treated by authors®™8),

This paper deals with an interaction problem of
two ellipsoidal inclusions under asymmetric uniaxial
tension on the idea of the body force method coupled
with a singular integral equation formation. The
problem is solved on the superposition of two auxilia-
ry loads; (i) biaxial tension and (ii) plane state of
pure shear. Then, the interaction effects will be
discussed with varying the shape, spacing and elastic
ratio of ellipsoidal inclusions.

2. Numerical Solutions

Consider an infinite body having two ellipsoidal
inclusions under asymmetric uniaxial tension as
shown in Fig. 1(c¢ ). This problem is composed of the
superposition of Problems A and B as shown in Fig. 1.
Rectangular and cylindrical coordinates (z, ¥, 2) and
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(a) Problem A (Biaxial) (b) Problem B (pure shear)

(c) Problem C (Uniaxial) (d) Coordinate system

Fig. 1 Problem and coordinate system

(7, 8, 2) are defined as shown in Fig. 1. Here, (&, 7, &)
and (o, ¢, §) are rectangular and cylindrical coordi-
nates that specify the points where body forces are
distributed. The problem A can be analyzed by
applying the solution described in our previous
paper. In this paper, therefore, the solution of the
problem B will be mainly explained.

First, the body force method is used to formulate
the problem as a system of singular integral equa-
tions. Here, the fundamental solutions are stress
(K&, Kig, weeeee , K¢, Ki#) and displacement fields (K7,

iy e , Ki2, Ki%) at an arbitrary point (»=a cos ¢,
z=d+ b sin ¢) when two ring forces acting symmetri-
cally to the plane 2=0. In this case we should con-
sider the boundary condition only on 2=0 because the
problem B is symmetric with respect to 2=0. Here, it
should be noted that each ring force has the magni-
tude proportional to cos2¢ or sin2¢ along the
circumference!”~#» Then, the problem can be for-
mulated in terms of singular integral equations by
using the fundamental solutions due to ring forces in
two infinite bodies “M” and “I”. Here, the infinite
‘body “M” has the same elastic constants as those of
the matrix (Ew, vu) and the infinite body “I” has the
same ones as those of the inclusions (E:, v;). The
integral equations are expressed in Egs.(1)-(6),
where unknowns are the body force densities dis-
tributed in the infinite body M and I in the 7, 8, z
directions along the circumference specified by the
angle @ pw(a), oin(a), ptu(a), o), ot(a), o%(a).

—1/2{p3u($)cos do+ o2(¢)sin o}
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—1/2{p%(¢)cos ¢o+ 0% (¢)sin ¢o}
4 [ :/ZK{;M(a, $)osm(a)ds

+ [ ::ZKiﬁm(a, $)osn(a)ds
+ [ ::K;%f(a, $)okn(a)ds
— [ Kt pon(a)ds
[ Ktu(a, Pona)ds
~ [ KEia, $)en()ds

=— 05 cos? ¢ cos 26 (1)

—1/2{obu($) + 05 ($)}

/2

+-/:n/2K"F;M(a’ ¢)otu(a)ds
/2

+[”/2K$M(a, ) osu(a)ds
w2

+ [ mK;fEM(a, O oke(a)ds
2

_[,,,ZKQI(&’, P ok(a)ds
/2

—./—-n/zK’f;](a’ ¢')03‘1(ar)d5
/2

_/:mzK'Z’z’(a’ ¢)P§1(d)ds

=—17%C0S ¢osin 26 (2)

—1/2{— o3 (¢)sin ¢o+ ok ($)cos do}
- —1/2{—p%(¢)sin ¢o+ pki($)cos ¢o}

/2

+ [ mefJu(a, P)ot(a)ds
/2

+ / " Klt(a, 9)obnla)ds
/2

+_/:Z/ZK{§w(a, &) oi(a)ds
w2

—/_.WK;Z?(Q, ) ok(a)ds
T2

~ [ Kiia, 9ot(@)ds

/2
~ [ L Kila, $)oma)ds

= — 07 sin ¢ cos ¢o cos 20 (3)

/2 /2
[ Kbide Dotuaas+ [ Kitula, 4)oin(a)ds

/2

+ [ Keda, dot(@)ds
/2

~ [ Kiala, Dota)ds
/2

- f_ L Karla, 9)ohia)ds

/2
- [T Kia(a, 9)ot(a)ds
=— (07— vuoy)¥/Ey cos 26 (4)

/2 /2
[%/ZK&%(a, ¢)piM(a)a’s+[szng(a, 0) o) ds

ﬂ/ZKFz % d
+ [ oK@, §) o2 a)ds

/2
—[ﬂ/zl{fe’z(a, 9 ok(a)ds
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/2
~ [T Kinta, p)otl@ds

/2
~ [ K, 9ot
=—152(14 vy)#/Ew sin 26 (5)
/2 /2
[7 Kezla, pyot(@ds+ [ Kiula, §)oin(@)ds

/2

+f Kizda, ¢)oiu(a)ds
-1/2
T2

~ [ Kiila, enl@)ds
2

— f_ MZKzszI(Q, $)ok(a)ds

/2
— [ Kate, p)ps(aas

=—yu(o7+ 07)z/Ewn cos 20 (6)
where
—do=asin ada, d¢=1b cos ada,
ds=+va*sin® a+ b* cos® a da (7)

Here ¢s is the angle between the 7-axis and the
normal direction of ellipsoidal inclusion at (7, 2). The
unknown functions in Eqs.(1)-(6) pfla), odu(a),
oi(a) are defined by the following equations. Other
unknown functions p¥(a), o%(a), o¥(a) can be expres-
sed in a similar way.

piu(a)cos 2‘?":"(%, otn(a)sin 2¢=;§‘£—&9,

oin(a)cos 2= ;dg‘gg (8)

Here dFy, dFe, dF: are the components of the resul-
tant of the body force in the 7, 8, z directions, respec-
tively, acting on the infinitesimal area »d¢ds. Equa-
tions (1)-(6) enforce boundary conditions at the
imaginary boundary ; that is, 0uw — 0 =0, Taoy — Tnor =
0, Tntm — fnu:O, Urm — Mﬂ:(), Uom — uw:O, Uz — Uz =0,
Equations(1)-(3) include the Cauchy-type singular-
ity and Eqs.(4)-(6) include the logarithmic-type
singularity. Therefore in Egs.(1)-(3), the integra-
tion should be interpreted as a meaning of Cauchy
principal value.

As shown in Egs.(1)-(6), the problem is
reduced to determining the body force densities o7u()
~p%(a@). In the present method, auxiliary functions
[A(a), f(@)], which are defined by original unknown
functions, will be determined instead of determining
the original functions directly. In the following equa-
tions, the notation /(@) means the original unknowns
of(a)~o%(a), and Ala), £(a), means the auxiliary
functions obtained from () as shown in Eq.(9).

Ala)={f(@)+F(—a)}/2, fila)={f(a)— F(—a)}/2

(9)
Here, fi(a), f2(a) satisfy following equations.

Ala)=A(—a), fla)=—f(—a) (10)
Determining auxiliary functions f(a), fz(@) in the
range 0=Za=n/2 is equivalent to determining the
unknown functions (@) in the range—7/2<a=n/2.
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In other words, if the auxiliary functions are given in
the range 0= a= /2, the original unknown functions
F(a) are expressed in the range— /2= a=n/2.
fla)=H(a)+ fa)
f(—a)=A(—a)—fo( —a)=fi(a)— fula) (11)
Then, fundamental density functions are defined as
continuous functions satisfying Eq.(10) as follows:
ZUra(Ul) = wes(a') = %r(a’),
wra( @)= weu(@) = n-(a)sin(a),

wal@)=nAla)/sin(@), wala)=na) (12)
(@)= b cos a

Jasin® a+b’cos’a’
na)= asma (13)

Ja?sin? a+ b* cos® @
Here, wrs(a), wes(a), wa(a) satisfy the first Eq.(10)
and wr4(@), we @), wla) satisfy the second Eq.(10).
Here, it should be noted that wrs(a), wes(@), w=(a) are
exact densities of body force to express a single
ellipsoidal inclusion under plane state of pure shear.

The unknown functions efu(a)~p0%(e) can be
expressed as a linear combination of the fundamental
density functions and weight functions as shown in
following equations.

o5(a)= prau( @) wrs( @)+ orau{ @) wr @)

PﬁeFM(aO: 003M(a/) Wes(d) + po4M(a’) w04(a’)

PfM(a/):tOzzM(Q) wzz(d)+9z1M(a’) wala)

o(@)= orsr(@) wrs(@) + ora(@)wrd @)

(@)= 0os1(@) wos(@) + esr(@) wes @)

P?J(a’)zpzy(a’) sz(a)+0211(0’) wala)

(14)

In Egs.(14), taking pfu(a) for example, orsu(@)wrs(@)
correspond to fi(a) of Eq.(11) and pfauu(@)wra) cor-
respond to fo{@) of Eq.(11). Then, all weight functions
orsm(a), -+, pz21{a) must satisfy Eq.(15).

da)=g(—a) (15)
where g(@) means the weight functions prax(a@), -,
oz1:(@). In problem B, the following equations have
been applied.

M/2 M2
PrsM(d):nZlantn(a’), 10r4M(a/)=nZ::IbanLn(a’),
M2 M2
pesM(a) = ngl Cann(a), PH4M<LY): ”gl anfn(a’),
M2 M2
pzu(@)= 2 enntn(@), pau(@)= 2 fntn(a),
M2 M2
prsz(a):;}lamz‘n(a), 0r41(a):7§15n1l‘n(0’),
M2 M2
po31(d):7§10thn(a/), .0341(61’>:§1dn1fn<01),

M2 M2
0z2r(@)= nZ:.‘.l entn(a), o2{@)= nglfnltn(a)
(16)
tla)=cos{2(n—1)a} 17
where M is the number of the collocation points in
—n/2<a=n/2. Here, Eq.(15) is always satisfied for
all the weight functions orsu(a), -+, 0z11(2) when the
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Egs. (16), (17) are used.

Using the approximation method mentioned
above, the singular integral equations are reduced to a
system of algebraic equations for determining the
coefficients *y St The number of
coefficients is 4M. Using the numerical solution

anm, bnM, o

Table 1 Convergence of unknown function

(Problem B, a/b=1.0, 6/d=0.8, E//Ex=10°)

WIM| Prame | Pesm | Pzam | Pram | Pesm | Pzim
12|-2.0455|-2.0602|-0.0770[-0.0919}-0.0565[0.0364
0]|16]-2.0452|-2.0601|-0.0764[-0.0917)-0.0566[0.0360
20|-2.0455|-2.0601}-0.0760|-0.0917|-0.0566}0.0360
12|-2.0422|-2.0581]-0.0781|-0.0947}-0.0585[0.0380
10|16f-2.0422(-2.0582|-0.0778|-0.0945|-0.0586|0.0381
20(-2.0427(-2.0581|-0.0779]-0.0946]-0.0586]0.0381
12{-2.0148|-2.0395(-0.0867-0.1187(-0.0771}0.0542
30|16(-2.0147(-2.0393|-0.0867|-0.1188[-0.0772{0.0541
20-2.0147|-2.0395|-0.0868(-0.1188(-0.0772}0.0541
12]-1.8962|-1.9284]-0.0736(-0.2165[-0.1801(0.0659
60[16[-1.8960|-1.9282|-0.0736|-0.2167|-0.1803[0.0658
20/-1.8960(-1.9282]|-0.0736}-0.2167[-0.1803[0.0658
12|-1.7829|-1.7894-0.0143]-0.3075(-0.3009|0.0140
80/16(-1.7830|-1.7895|-0.0140]-0.3074{-0.3009}0.0140
20[-1.7830[-1.7895|-0.0140[-0.3074[-0.3009{0.0140
12{-1.7608-1.7607}-0.0000]~0.3251}-0.3253}0.0000
90|16(-1.7606(-1.7606|-0.0000|-0.3254]-0.3254]0.0000
20[-1.7605]|~1.7605|-0.0000|-0.3255(-0.3254{0.0000

Table 2 Maximum stress of two spherical cavities
(Cl/bzl 0, E[/EMZO)

a/d (deg.) 0 gmax J ea J os
~90~+90 2.0455 2.0455 2.0455
0 (-90~+90) (2.045) (2.045) (2.045)
-2 2.0455 2.0450 2.0450
0.1 (0) (2.046) (2.045) (2.045)
-10 2.0462 2.0433 2.0433
0.2 (~10) (2.046) (2.045) (2.045)
~10 2.0481 2.0423 2.0452
0.3 (-15) (2.048) (2.043) (2.046)
-17 2.0508 2.0375 2.0460
0.4 (-20) (2.052) (2.038) (2.046)
-25 2.0599 2.0304 2.0478
0.5 (-25) (2.060) (2.031) (2.048)
-31 2.0742 2.0292 2.0509
0.6 (~30) (2.074) (2.029) (2.051)
0.7 -41 2.1022 2.0652 2.0557
0.8 -90 2.2296. 2.2296 2.0620
(-90) (2.230) (2.230) (2.062)
0.9 -90 2.7741 2.7741 2.0701
() : Tsuchida®™
z,¢ -
B
b v 500
a
o~ -
dl Yy
X
o -
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mentioned above we will obtain the stress distribution
along the interface and discuss the maximum stress. -

3. Numerical Results and Discussion

3.1 Convergence of the results
Table 1 shows the convergence of unknown func-
tions prsM(a’), pesM(a’), pzzM(a), Prsz(a/), 10531(61'), Pzzl(a’)
with increasing the collocation number M when a/b=
1.0, 8/d=0. 8, Ei/Ex=10° for problem B in Fig. 1. The
present results have shown good convergence to the
fifth digit when M =20. Also the boundary conditions
are confirmed to be less than 107 for Guw— Our, Tuen
The
present method yields rapidly converging results and
highly satisfied boundary conditions.
3.2 Results of ellipsoidal cavities
First of all, results of cavities (E:/Ex=0) will be
shown. Table 2 indicates the maximum stresses with
their positions and the stresses at points A and B for

T Tnét, Tnttt ™ Tntry, Urmt — Urt, Uom — Ueor, Uz — Uzr.

4.5 T T
g
8 4 F n
3.5 [ N
a/b=1/8
3 F -
/, \
1/4 N
2.5 [C
1 1/2
2 ) I L 1 T
-90 -60 -30 0 30 60 90
v [(deg.]

Fig. 2 Boundary stress 0s for a single cavity on 8=n/2
(E//Ev=0, bld=0)

4.5 T T T T T
z|

Z ¢
b~
oo
Ve %’

X
L ) -
3.5 ;‘/ -
a/b=1/8

!
-60

i f I I
-30 0 30 60

¥ [deg.]
Boundary stress 0s on 8=r7/2
(EI/EM =0, b/d:(). 9)

2
-90 90

Fig. 3
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Table 3 Maximum stress of two ellipsoidal cavities (Ei/Ex=0)

b/d 0 1/3 1/2 2/3 0.8 0.9 zi
b
b -
a/b |(deg.)] g g |(deg.)| g @ |(deg.)| g g |(deg.)| - g g [(deg.)| g g |(deg.)| O @ a
1 ~90~90] 2.0454 -17 2.0492] -25 2.0599] =37 2.0905| =90 2.2296| -90 2.7741 g
. Ve Pl
1/2 0 2.4084 -1 2.4814 -7 2.4846| -24 2.4938| -47 2.5240| -72 2.6363 X b4
o.oo/
/
1/4 . 0 2.7772 =12 2.7780| -28 2.7859| =37 2.8221| -39 2.9246| -42 3.2051 ~
1/8 0 2.9235 15 2.9243 -20 2.9218} =51 2.9258| =56 2.9478} -59 3.0044 e
3 T T T T T 25 T ' T T ¥

-90 -60 =30 60 90

0 30
P [deg.]
Fig. 4 Boundary stress 0s on §=r/2
(EJEw=0, a/b=1.0)

2.7 I ! 1 i !
-90 -60 -30 0 30 60 90

¥ [deg.]

Fig. 5 Boundary stress ds on 8=m/2
(E1/EM=0, a/b:1/8)

spherical cavities (a/b=1.0). Tuchida’s results coin-
cide with the present results to the fourth digit in most
cases. Figure 2 shows boundary stress of a single
cavity (b/d=0), and Fig.3 shows boundary stress
when 6/d=0.9. When a/b=1 and 1/2, the interaction
is large near ¢=—7/2; on the other hand, when a/b=
1/4 and 1/8, the interaction appears in a different way.
Figures 4 and 5 show boundary stresses when a/b=

Series A, Vol. 42, No. 3, 1999

b/ d=0.8-
— ~— - — single

-0.5 1 1 1 1 1
-90 -60 -30 0 30 60 90
y[deg]
Fig. 6 Interface stresses O, 0o, G¢, Tnt, 01 0N 0=0 and e
on 9:7[/4 (a/b:1 0, EI/EM=105) '

T y
---- single

r
a’ ¢ ) ——— b/d=0.87
/1/ > [ X

-90 -60 -30 0 30 60 90
Vv [deg]

Fig. 7 Interface stresses O, 0s, O, Tne 0N 6=0
(d/bzl O, E[/EM:0 1)

1.0, 1/8. Maximum stresses and their positions are
shown in Table 3.
3.3 Results of a single inclusion

Figure 6 shows interface stresses of spherical
inclusions when a/6=1.0 and E/Ex=10°. The solid
lines for a/d=0. 8 are compared with the broken lines
for a single inclusion (a/d=0). In Fig. 6, stress distri-
butions are shown on the plane §=0 except for s on
the plane @=nr/4. The notation 01 means maximum
principal stress that is obtained from 0, 0¢, 0z:. The
interaction mainly appears as a compressive stress o
around ¢=—m/2.

Figure 7 shows interface stresses on =n/2 of
spherical inclusions when @/b=1.0 and Ei/Ew=0.1.
The stress 0y is larger than others and the interaction
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3 T T T T T

EJE,=10" |

Fig. 8 Interface stress o» on =0 (a/b=0.5,1.0,2.0,
EI/EMZIOS, 2 0, 0)

3.5 T T T T T
o b:: E/E,=0 — — — — 1.0
3 r f( a-> —_ (25 [ 10° 1
P
25 - ——
o= Wbe0s (=)
2 T =Ty, . 3
1.5 f“_'—‘*‘k“zjo-(—g;m)-——»—-~~-—~— -3
1 Le—#b21.02005 (0=n/2). - g ¥P=20 (6=0) |
PR 1.0 (6=0)
LefIIIlr i: 05 (6=0)
05 a/b=2.0 (8 }2\):‘::‘“ 7
=2, =n R
o L 10 (6=m/2) iy
. 05 (8=n/
-0.5 I 1 1 L L
-90 -60 -30 ] 30

60 20
¥ [deg]

Fig. 9 Interface stress d¢ on 0=n/2 (a/b=0.5,1.0, 2.0,
EEx=10°1.0,0.1,0)

90 -60 -30 0 30 60 90
: WVideg|

Fig. 10 Interface stress 6. on 8=0(a/b=1.0, E//Ex=10°)

of s appears around ¢=—7x/2. From Figs. 6 and 7,
we will mainly discuss the interaction for ¢, on =0
when Ei/Ex>1 and for ¢s on §=7r/2 when E//Ex<1.
Figure 8 shows an interface stress 0, on =0, and
Fig. 9 shows g5 on 8=1/2, both for a single ellipsoidal
inclusion. When E;/Ex=10°, 6, on §=0 is also shown
in Fig. 9 because the value is larger than the one on 4
=7/2. For a single inclusion we can see the maximum
stresses for different E;/Ew. In following section, the
interaction will be discussed by taking example of
EJEx=10° and E/Ex=0. 1.
3.4 Results of two ellipsoidal inclusions
Figures 10, 11, 12 show the interface stress ox
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0.7

0.8

AN

0.9

1 L 1. 1 1

-90 -60 -30 0 30

60 920
Wideg]

Interface stress 0. on =0 (a/b=2.0, Ei/Ex=10°)

-3 1 ] ] i 1

-90 -60 30 0 30 60 90
W¥ldeg|
Fig. 12 Interface stress 0, on =0 (a/b=0.5, Ei/Ex=10°)
2.4 T T T T T
dﬂ /
23
OOO
2.2 el
Y
2.1 .
2
1.9
1.8

-90 -60 -30 0 30 60 ¥ideg] 90

Fig. 13 Interface stress ds on 0=r/2 (a/b=1.0,
E/Ex=0.1)

when a/b=1, 2.0, 0.5, respectively. The interaction
appears near ¢=-—7/2 as a large compressive stress
especially when 4/d>0.7. However, the maximum
tensile stress o» near ¢ =0, which may cause debond-
ing the interface, is almost independent of the interac-
tion. On the other hand, when E;/Ex=0. 1 as shown in
Figs. 13-15, the interaction appears as a large tensile
stress 0s similarly to the case of cavities (E/Ex=0).
When b/d and E:/Ey are fixed, the interaction appears
largely when a/b is large in Figs. 10-15.

Tables 4-6 show maximum stresses 0» and ¢, and
their positions. The maximum stress appears near ¢
=0 when Ei/Ex=10,10°. Then, the interaction
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Table 4 Maximum stress of two ellipsoidal inclusions

Table 5 Maximum stress of two ‘ellipsoidal inclusions

“(afb=1.0) (a/b=2.0)
a/b=1.0 Matrix a/b=2.0 Matrix
v o k4 ¢ E1/Eu b/d v 4 ¥ o
E1/Em b/d | o n (deg) 6 (deg) n (deg) 6
G=n/2 8=mn/2
0 -90~90| 2.0455 0 +90 1.6601
0.2 -390 2.0462 0.2 90 1.6595
0 0.5 -25 2.0599 0 0.5 32 1.6748
0.7 -90 2.1569 0.7 -90 1.8863
0.8 -90 2.2302 0.8 -90 | 2.1725
0.9 -90 2.7773 0.9 90 | 2.7818
6=0 f=mr/2 8=0 Q=7m/2
0 0 0.1919 |{-90~90| 1.8540 0 0 0.1559 +85 1.5565
0.2 0 0.1920 |[-90~90] 1.8546 0.2 4} 0.1562 90 1.5565
0.1 0.5 0 0.1931 -25 1.8643 0.1 0.5 0 0.1599 -36 1.5699
) 0.7 0 0.1955 -45 1.8956 ) 0.7 1 0.1621 -90 1.7363
0.8 0 0.1972 -90 1.9931 0.8 1 0.1623 -90 1.9502
0.9 0 0.1992 -90 2.3860 0.9 1 0.1636 -90 2.3688
6=0 6=0 6=0 6=0
0 0 1.7684 0 0.6698 0 0.8337
0.2 0 1.7682 0 0.6697 002 8 3‘3832 0 0.8335
10 0.5 0 1.7627 0 0.6681 0'5 1 2'1817 0 0.8272
0.7 0 1.7492 0 0.6636 10 0.7 1 51490 0 0.8171
0.8 0 1.7386 0 0.6602 0‘8 1 2'1331 0 0.8133
0.9 0 1.7261 0 0.6561 : ) 0 0.8102
0.9 1 2.1190 90 97
920 =y (-90) | (-0.9700)
0 1.9383 0 0 8367 8=0 §=0
os | o | 1ie3s1 0 0.8306 0 PO B O Bt
oe 0 1.9316 0 0.8278 2.5558 0 1.0951
105 0.7 o 19155 0 0.8208 0.2 0 2.5152 0 1.0766
o8 0 1.9033 0 0.8156 10° 0.5 0 2.4613 0 1.0533
. (-90) | (-0.9528)| (-90) | (-0.4083) 0.7 1 2.4352 0 1.0432
o 0 1.8887 0 0.8094 0.8 | (-90) |(-1.8246)| (-90) | (-0.7611)
’ (-90) | (-1.9132){ (-90) | (-0.8198) 0.9 1 2.4154 0 1.0326
(-90) (-3.9027) (-90) {(-1.6664)
2.5 T T T T T 2.3 T T T T T
% b/d=0.9
225 | ¥ -
0.8
22 b o7 N\ -
2.15 \ A
\ 0.2 ]
0.5
_____q__—’—'_%*—*y
15 1 L 1 L L 21 1 H 1 1 1
90 60 .30 0 30 60 90 -90 60 -30 0 30 60 W¥|deg) 90
W(deg)
Fig. 14 Interface stress s on 0=7/2 (a/b=2.0, Fig. 15 Interface stress ds on =7/2 (a/b=0.5,
l?Mfaw==0.1) EDHEM::O.I)

appears as a large compressive stress when bld
becomes large at ¢=— /2. The position of maximum
stress varies depending on b/d when Ei/Ex=0,0. 1.

4. Conclusion

In this study, two ellipsoidal inclusions in an
infinite body under asymmetric uniaxial tension are
considered using singular integral equations of the
body force method. The conclusion can be made as
follows. o

(1) The problem is solved on the superposition of
two auxiliary loads; (i) biaxial tension and (ii)

Series A, Vol. 42, No. 3, 1999

plane state of pure shear. In order to satisfy the
boundary conditions, the unknown functions are ap-
proximated by a linear combination of fundamental
density functions and polynomials. The present
method is found to yields rapidly converging numeri-
cal results and smooth stress distribution along the
boundary.

(2) The maximum stresses and interface stresses
are shown in tables and figures for various shape,
spacing, and elastic ratio of inclusions. Tuchida’s
results for spheroidal cavities coincide with the pres-
ent results to the fourth digit in most cases.
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Table 6 Maximum stress of two ellipsoidal inclusions
(a/b=0.5)
a/b=0.5 Matrix
¥ ¥
E1/Em b/d On o
(deg) (deg) ¢
6=r/2
0 0 2.4804
0.2 0 2.4806
0 0.5 -7 2.4846
0.7 -30 2.4979
0.8 -47 2.5240
0.9 -73 2.6363
=0 8=mr/2
0 0 0.2246 0 2.1643
0.2 0 0.2247 0 2.1644
0.1 0.5 0 0.2249 -5 2.1671
: 0.7 0 0.2256 -28 2.1755
0.8 0 0.2262 -46 2.1923
0.9 0 0.2272 -73 2.2694
=0 8=0
0 9 1agas 0 0.5879
0.2 : 0 0.5879
oe 0 1.5482 0
10 : 0 1.5463 0.5878
0.7 0 0.5874
0 1.5444
0.8 0 0.5870
0.9 0 1.5414 0 0.5864
’ (-90) | (-1.6973) .
8=0 8=0
0 0 1.6523 0 0.7081
0.9 0 1.6523 0 0.7081
5 0% 0 1.6519 0 0.7079
10 0.7 0 1.6502 0 0.7072
0.8 1 1.6484 0 0.7065
09 1 1.6459 0 0.7054
. (-90) | (-2.9225)| (-90) | (~1.2785)
(3) When E//Ex>1, the interaction appears as a

large compressive stress ¢» around ¢ = — 7/2 when b/d

>0.7 (see Figs.10-12).

However, the maximum

tensile stress . near ¢ =0, which may cause debond-
ing the interface, is almost independent of the interac-
tion. When Ei/Ex<1, the interaction appears as a
large tensile stress 0. When b/d and Ei/Ew are fixed,
the interaction appears largely when a/b is large as
shown in Figs. 10-15.

(1)

(3)

(4)

References

Donnel, L.H., Stress Concentrations due to Ellipti-

cal Discontinuities in Plates under Edge Forces,
Ann. Vol. T. Von Karman, Calif. Inst. Tech.
(1941), p. 293-309.

‘Shioya, S., Tension of a Infinite Thin Plate Hav-

ing Two Equal Circular Inclusions, Trans. Jpn.
Soc. Mech. Eng.,(in Japanese), Vol .36 (1970),
p. 886-897.

Eshelby, J.D., The Determination of the Elastic
Field of an Ellipsoidal Inclusion, and Related
Problems, Proc. Royal Soc., A., Vol. 241 (1957),
p. 376-396.

Eshelby, J.D., The Elastic Field outside an Ellip-
soidal Inclusion, Proc. Royal Soc., A., Vol. 252
(1959), p. 561-569.

JSME' International Journal

(6)

(7)

(8)

(11)

(12)

(13)

(14

(15)

(16)

a7

(18)

379

Noda N.A. and Matsuo, T., Analysis of a Row of
Elliptical Inclusions in an Plate Using Singular
Integral Equations, International Journal of Frac-
ture, Vol. 83 (1997), p. 315-336.

Edwards, R.H., Stress Concentrations around
Spheroidal Inclusions and Cavities, Trans. ASME,
J. Appl. Mech., Vol. 19, No.1 (1952), p. 19-30.
Eubanks, R.A., Stress Interference in Three-
Dimensional Torsion, Trans. ASME, J. of Appl.
Mech., Series E, Vol. 32, No.1 (1965), p. 21-25.
Shelly, J.F. and Yu, Yi-Yuan, The Effect of Two
Rigid Spherical Inclusions on the Stresses in an
Infinite Elastic Solid, Trans. ASME, J. of Appl.
Mech., Series E, Vol. 33, No. 1 (1966), p. 68-74.
Goree, J.G. and Wilson, H.B., Axisymmetric Tor-
sional Stresses in a Solid Containing Two Par-
tially Bonded Rigid Spherical Inclusions, Trans.
ASME, ]. of Appl. Mech., Series E, Vol. 34, No. 2
(1967), p. 313-320.

Atsumi, A., Stresses in a Circular Cylinder Having
an Infinite Row of Spherical Cavities Under Ten-
sion, Trans. ASME, J. of Appl. Mech., Series E,
Vol. 27, No. 1 (1960), p. 87-92.

Miyamoto, H., On the Problem of the Theory of
Elasticity for a Region Containing more than Two
Spherical Cavities (First Report, Theoretical
Calculations), Trans. Jpn. Soc. Mech. Eng., (in
Japanese), Vol. 23, No. 131 (1957), p. 431-436.
Nisitani, H., Approximate Calculation Method of
Interaction between Notches and Its Application,
Journal of the JSME (in Japanese), Vol. 71, No.
589 (1968), p. 35-47.

Nisitani, H., On the Tension of an Elastic Body
Having an Infinite Row of Spheroidal Cavities,
Trans. Jpn. Soc. Mech. Eng., (in Japanese), Vol.
29, No. 200 (1963), p. 765-768.

Noda, N.A., Matsuo, T., Harada, S. and Na-
kamura, M., Singular Integral Equation Method
in the Analysis of Interaction between Ellipsoidal
Inclusions, Trans. Jpn. Soc. Mech. Eng. (in
Japanese), Vol.61, No.585, A (1996), p.1051-
1058.

Tuchida, E., Nakahara, I. and Kodama, M., Asym-
metric Problem of Elastic Body Containing Sev-
eral Spherical Cavities (First Report: Two
Spherical Cavities in an Elastic Body), Trans.
Jpn. Soc. Mech. Eng., (in Japanese), Vol. 42, No.
353 (1976), p. 46-54.

Tuchida, E., Uchiyama, N., Nakahara, I. and
Kodama, M., Asymmetric Problem of Elastic
Body Containing Several Spherical Cavities (Sec-
ond Report: Three Spherical Cavities in an Elas-
tic Body), Trans. Jpn. Soc. Mech. Eng., (in
Japanese), Vol. 44, No. 382 (1978), p. 1876-1883.
Noda, N.A., Ogasawara, N. and Matsuo, T., Inter-
action Effect between Ellipsoidal Cavities in an
Infinite Body under Uniaxial Tension, Trans. Jpn.
Soc. Mech. Eng., (in Japanese), Vol. 62, No. 596, A
(1996), p. 1051-1058.

Noda, N.A., Ogasawara, N. and Matsuo, T.,

Series. A, Vol. 42, No. 3, 1999

NII-Electronic Library Service



380

(19)

Interaction Effect among a Row of Ellipsoidal
Cavities in an Infinite Body under Uniaxial Tension,
Trans. Jpn. Soc. Mech. Eng., (in Japanese), Vol.
62, No. 602, A (1996), p. 2283-2289.

Noguchi, H., Nisitani, H., Goto, H. and Mori, K.,
Semi-Infinite Body with a Semi-Ellipsoidal Pit
under Tension, Trans. Jpn. Soc. Mech. Eng.(in
Japanese), Vol.53, No. 4838 (1987), p.820-826.

(20)

[JSME International Journal Series I, Vol. 32, No.
1 (1989), p. 14-22]

Noda, N.A. and Tomari, K., Fundamental Solu-
tion and its Application for Stress Analysis of
Axisymmetrical Body under Asymmetric Uniax-
ial Tension, Bulletin of the Kyushu Institute of
Technology, (in Japanese), Vol. 70 (1998), p. 7-12.

Series A, Vol. 42, No. 3, 1999

JSME International Journal

NII-Electronic Library Service





